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ABSTRACT

Objective To identify nivolumab resistance-related genes in patients with head and neck squamous cell
carcinoma (HNSCC) using single-cell and bulk RNA-sequencing data.

Methods The single-cell and bulk RNA-sequencing data downloaded from the Gene Expression Omnibus
database were analyzed to screen out differentially expressed genes (DEGs) between nivolumab resistant and
nivolumab sensitive patients using R software. The Least Absolute Shrinkage Selection Operator (LASSO)
regression and Recursive Feature Elimination (RFE) algorithm were performed to identify key genes associated
with nivolumab resistance. Functional enrichment of DEGs was analyzed with Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes analyses. The relationships of key genes with immune cell infiltration,
differentation trajectory, dynamic gene expression profiles, and ligand-receptor interaction were explored.
Results We found 83 DEGs. They were mainly enriched in T-cell differentiation, PD-1 and PD-L1 checkpoint,
and T-cell receptor pathways. Among six key genes identified using machine learning algorithms, only PPPIR14A4
gene was differentially expressed between the nivolumab resistant and nivolumab sensitive groups both before
and after immunotherapy (P < 0.05). The high PPPIR144 gene expression group had lower immune score (P <
0.01), higher expression of immunosuppressive factors (such as PDCDI, CTLA4, and PDCDILG2) (r > 0, P <
0.05), lower differentiation of infiltrated immune cells (P < 0.05), and a higher degree of interaction between
HLA and CD4 (P < 0.05).

Conclusions PPPIRI4A gene is closely associated with resistance to nivolumab in HNSCC patients. Therefore,
PPPIR14A may be a target to ameliorate nivolumab resistance of HNSCC patients.
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Head and neck squamous cell carcinoma (HNSCC) is
the sixth most common cancer in the world, and its in-
cidence and mortality are increasing year by year!!,
The treatment modalities for HNSCC usually involve
surgical resection, adjuvant radiotherapy, or a combi-
nation of radiotherapy and chemotherapy. The 5-year
survival of HNSCC patients is less than 50% because
about 60% of the patients are in advanced stages at
diagnosis and the tumor are prone to lymph node
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metastasis and local recurrence!®?. In addition, surgery
may lead to pharyngeal dysfunction or a defective head
and neck appearance, and radiotherapy may result in
damage to other organs, therefore leading to a poor
clinical prognosis*l. Fortunately, immune checkpoint
inhibitors targeting programmed cell death protein 1
(PD-1) and programmed cell death protein ligand 1
(PD-L1) offer a treatment intensification strategy for
patients with advanced or metastatic HNSCC, with the
advantage of avoiding the side effects of conventional
therapies and generating a sustained anti-tumor im-
mune responsel®. They can effectively manipulate the
immune system to specifically recognize and attack
cancer cells. Nivolumab, an anti-PD-1 immune check-
point inhibitor, has been approved for recurrent or
metastatic HNSCC treatment. Although nivolumab im-
proved overall and progression-free survivals, drug re-
sistance compromises its efficacy!®’), There is a need
to explore the resistance mechanisms to nivolumab.
Therefore, we analyzed single-cell and bulk RNA-
sequencing data using bioinformatics to identify pos-
sible genes that may be involved in nivolumab resis-
tance to improve response rate and survival of HNSCC.

MATERIALS AND METHODS

Data acquisition

Sequencing data of HNSCC patients treated with niv-
olumab were downloaded from the Gene Expression Om-
nibus (GEO) database (https://www. ncbi. nim. nih. gov/
geo/). GSE195832 dataset contained RNA-sequencing
data of tumor tissues from 96 HNSCC patients treated
with nivolumab, of which 42 patients were sensitive to
nivolumab and 54 resistant to nivolumab. GSE232240
dataset contained single-cell RNA-sequencing data of
immune-infiltrating cells from tumor tissues in 18 HNSCC
patients treated with nivolumab, of which 11 patients
were sensitive and 7 resistant to nivolumab. The single-
cell data were processed according to the following crite-
ria: (1) retention of cells expressing between 1,000 and
100,000 genes; (2) retention of cells with less than 20%
mitochondrial genes; and (3) retention of genes ex-
pressed between 500 and 10,000.

Differential expression analysis of nivolumab
resistance-related genes

For bulk data, differentially expressed genes (DEGs) be-
tween the nivolumab resistant and nivolumab sensitive
patients were identified by "limma" package of R soft-

warel® with the criteria of false discovery rate (FDR) <
0.05 and log fold change (logFC) > 0. For single-cell data,
resistance-associated DEGs (FDR < 0.05 and logFC > 0)
were screened by "FindMarkers" function of "seurat" pack-
agel’l. Genes with an average logFC > 0.585 for both
bulk and single-cell RNA-sequencing datasets were finally
considered as nivolumab resistance-associated DEGs.
Then, resistance scores of these DEGs were calculated by
"UCell" package and used to explore the differential ex-
pression of DEGs in different cell typest*?.

Functional enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses were per-
formed to analyze the function of resistance-associated
DEGs using the "clusterProfiler" packagel'!. Gene set
enrichment analysis (GSEA) was performed to identify
biological function of DEGs!*?l. Gene set variation analy-
sis (GSVA) was used to estimate the enrichment scores
of KEGG metabolism-related pathways of DEGs in pa-
tients resistant to nivolumab treatment!*3],

Identification of DEGs associated with nivolumab
resistance

The Least Absolute Shrinkage and Selection Operator
(LASSO) regression and Recursive Feature Elimination
(RFE) algorithm analyses!'**>! were utilized to screen
the key genes related to nivolumab resistance. Next,
an overlap of DEGs between the two datasets was
identified using a Venn diagram web tool (http://bioin-
formatics.psb.ugent.be/webtools/Venn/).

Evaluation of immune response

The CIBERSORT algorithm was used to calculate the
infiltration in  bulk RNA-
sequencing datal'®. The ESTIMATE algorithm was
used to estimate the immune score and tumor purity

level of immune cell

of each sample of bulk RNA-sequencing datal'”!,

The correlation between the expression of
PPP1R14A gene and different immunomodulatory fac-
tors was analyzed and logFC values and odds ratio
(OR) values were obtained.

Pseudotime and cellular communication analysis
The stemness score of each cell was calculated using
the "CytoTRACE" software package!'®!, and the Cyto-
TRACE results were used to assist the "Monocle3" al-
gorithm(**! to infer the proposed temporal differentia-
tion trajectory of cells.
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The tumor microenvironment is involved in com-
plex intercellular communication. Exploring receptor-
ligand interactions has a key role to reveal the tumori-
genesis and development of drug resistance!?®. There-
fore, the intensity of receptor-ligand interactions in dif-
ferent PPP1R14A expression groups was calculated by
using "CellChat" software package!®!! to evaluate the
potential relationship between PPP1R14A expression
and nivolumab resistance.

Drug sensitivity analysis

To predict potential treatment sensitive drugs for
nivolumab-resistant patients, we performed drug sensitiv-
ity analysis using data from the Genomics of Drug Sensi-
tivity in Cancer (GDSC) database (https://www.cancerrx-
gene. org/). The half maximal inhibitory concentration
(IC50) of 565 drugs was assessed using the "oncoPre-
dict" package!?? (for bulk sequencing data) and using the
"beyondcell" package!® (for single-cell sequencing data).

Expression validation of key gene

GSE212551 dataset (including 76 resistant patients
and 24 sensitive patients) and GSE226134 dataset (in-
cluding 40 resistant patients and 9 sensitive patients)
were used as external validation datasets to validate
the expression of PPP1R14A gene between nivolumab
sensitive and resistant patients.

In addition, we validated PPP1R14A expression
between nivolumab sensitive and resistant HNSCC
patients (n = 522) in The Cancer Genomic Atlas
(TCGA, https://portal. gdc. cancer. gov/) using the Tu-
mor Immune Dysfunction and Exclusion (TIDE) algo-
rithm[24],

Statistical analysis

All statistical analyses were performed by using R
(version 4.3.1, https://www. r-project. org/). Data were
described as mean =+ standard deviation (SD) or
median and interquartile range (IQR). The differences
between variables of different groups were tested us-
ing Wilcoxon test. Correlation analysis was performed
using Spearman correlation test. P < 0.05 was consid-
ered statistically significant.

RESULTS

DEGs associated with nivolumab resistance
We found 83 genes highly expressed in the nivolumab-
resistant group by analyzing bulk and single-cell RNA-
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sequencing data (logFC > 0.585, FDR < 0.05, Fig. 1A).
GO analysis showed that the biological process of
these DEGs was mainly enriched in pathways such as
regulation of T cell differentiation, Th2 cell differentia-
tion, and RNA modification. The main cellular compo-
nents were inner mitochondrial membrane, mitochon-
drial matrix, and mitochondrial ribosomes. Molecular
function focused on tumor necrosis factor binding,
membrane insertion enzyme activity, and glucokinase
activity. KEGG analysis showed that these DEGs were
mainly enriched in PD-1 and PD-L1 checkpoint path-
way, T-cell receptor signaling pathway, and tumor ne-
crosis factor (TNF) signaling pathway (Fig. 1B). More-
over, pathways mediating T cell receptor activity were
inhibited, whereas pathways regulating NK cell-
mediated cytotoxicity were activated (Fig. 1C). Resis-
tance scores for DEGs were highest in plasmacytoid
dendritic cells (pDC) and lowest in conventional den-
dritic cells (cDC) (Fig. 1D-1F).

Key genes for nivolumab resistance
LASSO regression screened out 10 key genes for drug
resistance (Fig. 2A). For its minimum prediction error,
random forest model of RFE algorithm was chosen for
analysis, and screened out 35 key genes (Fig. 2B).
Subsequently, through overlapping DEGs of bulk and
single-cell RNA-sequencing datasets, 6 key genes
were identified, including FKBP prolyl isomerase 1B
(FKBP1B), MHC class I polypeptide-related sequence
A (MICA), peptidyl arginine deiminase 4 (PADI4), pro-
tein phosphatase 1 regulatory inhibitor subunit 14A
(PPP1R14A), SNRPN upstream open reading frame
(SNURF), and TraB domain 2A (TRABDZ2A) (Fig. 2C).
Furthermore, we found that regardless of before
and after nivolumab treatment, only PPP1R14A among
the six key genes had statistically significant expres-
sion levels between the resistant group and the sensi-
tive group, with a decrease in expression after treat-
ment in the sensitive group and an increase in expres-
sion after treatment in the resistant group (all P <
0.05, Fig. 2D, 2E). Thus, the PPP1R14A gene may be
a key gene contributing to resistance to nivolumab in
HNSCC patients, which deserves further investigation.

PPP1R14A gene expression is related to low im-
mune response

The patients were categorized into high and low ex-
pression groups according to the median of PPP1R14A
gene expression. The ESTIAMTE algorithm analysis re-
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Figure 1. Identification of nivolumab resistance-associated differentially expressed genes (DEGs) between nivolumab resis-
tant and sensitive patients in the Gene Expression Omnibus (GEO) database. (A) Volcano plot of DEGs between nivolumab resis-
tant and sensitive patients in single-cell and bulk RNA-sequencing data. (B) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) enrichment analyses of function annotation of DEGs. (C) Gene set enrichment analysis (GSEA) of biological function of
DEGs. (D) The Uniform Manifold Approximation and Projection (UMAP) method shows the distribution of five immune-infiltrating cells in tu-

mor tissues. (E, F) Scatter plot (E) and violin plot (F) of resistance-related scores for five immune-infiltrating cells in tumor tissues (n

26,324).
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Figure 2. Identification of key genes for drug resistance. (A, B) Screening of key genes for drug resistance using the Least Absolute
Shrinkage and Selection Operator (LASSO) regression analysis (A) and Recursive Feature Elimination (RFE) algorithm analysis (B). (C)
Venn diagram shows overlapping DEGs identified by RFE and LASSO. (D, E) Comparisons of expression of each key gene in the sensitive
patients (D, n = 42) and the resistant patients (E, n = 54) before and after nivolumab immunotherapy. “*P < 0.001, **P < 0.01, *P < 0.05.
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vealed that tumor purity was significantly higher in expression and immune infiltration microenvironment
the PPP1R14A high expression group, and immune of HNSCC tissues using single-cell data. As shown in
score was significantly lower (P < 0.05, Fig. 3A). And Fig. 3D, the PPP1R14A gene was predominantly ex-
the expression of PPP1R14A gene was positively corre- pressed in T cells, followed by B cells, with the lowest
lated with the infiltration level of memory B cells (r > expression in cDC (P < 0.001). Further analysis
0, P < 0.001) and M2 macrophages (r > 0, P < showed that PPP1R14A expression in the T cells from
0.001), while negatively correlated with the infiltration nivolumab resistant patients was significantly higher
of naive B cells (r < 0, P < 0.001) and resting CD4 than that from nivolumab sensitive patients, which in-
memory T cells (r < 0, P < 0.001) (Fig. 3B). Besides, dicated that PPP1R14A gene induced immunotherapy
the PPP1R14A gene expression was positively corre- resistance is mainly regulated by activating its expres-
lated with the expression of immunosuppressive fac- sion in T cells (Fig. 3E). Furthermore, PPP1R14A gene
tors such as PDCD1, CTLA4, and PDCD1LG2 (r > O, expression in T cell subtypes was explored, and Uni-
logFC > 0, OR > 1, P < 0.05; Fig. 3C). form Manifold Approximation and Projection (UMAP)

These results suggested that PPP1IR14A gene clustering indentified three T cell subtypes, including
may promote drug resistance by suppressing the CD8+ T cells, CD4+ T cells, and regulatory T cells
body's immune response to the tumor. Therefore, we (Tregs) (Fig. 3F). The ratio of Tregs was lower in the
further explored the relationship between PPP1R14A nivolumab resistance group compared with the niv-
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Figure 3. Correlation of PPP1R14A gene expression and immune response. (A) Differences in tumor purity and immune score between
the high and low PPP1R14A gene expression groups (n = 96, "P < 0.05, P < 0.01). (B) Correlation between PPP1R14A expression and im-
mune cell infiltration. (C) Heatmap of the correlation between PPP1R14A gene and immunoregulatory genes. (D) Expression of PPP1R14A gene
in five types of immune cells (n = 9,347). (E) Comparisons of PPP1R14A gene expression in five immune cell subtypes between the nivolumab
resistant group and the nivolumab sensitive group (n = 9,347, P < 0.05, *P < 0.001). (F) Scatter plot of UMAP distribution of T cell subtypes.
(G) Proportion of T cells in different immunotherapy response groups (y> = 33.56, P < 0.001). (H) Differential PPP1R14A expression in CD8+
cells, CD4+ cells, and regulatory T cells (Tregs) in the immunotherapy sensitive and resistant groups. (‘P < 0.05, **P < 0.001).
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olumab sensitive group, while the ratios of CD4+ T mune cells like Tregs cells (P < 0.05, Fig. 3H).
cells and CD8+ T cells were higher (P < 0.001, Fig.

Functional enrichment of PPP1R14A
3G). Further, compared with the nivolumab-sensitive

GSVA showed that signaling pathways such as
group, PPP1R14A expression level was higher in the . . . . .
amino acid metabolism, glucose metabolism, biosyn-
thesis and metabolism of glycan, and lipid metabo-
CD4+ T cells of the nivolumab-resistant group, while lism had significant difference between the high and

the expression level was lower in the pro-tumor im- low PPP1R14A expression groups (Fig. 4A). More-

anti-tumor immune cells such as CD8+ T cells and
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over, quantitative analysis showed that the highly
expressed PPP1R14A was mainly enriched in tricar-
boxylic acid cycle and glycolytic pathway. While, the
lowerly expressed PPP1R14A was mainly enriched in
pathways of alanine, aspartate and glutamate

metabolism, leucine and isoleucine degradation,
fatty acid degradation, steroid biosynthesis, purine
and pyrimidine metabolism, and drug metabolism

(Fig. 4B).

Pseudotime and cellular communication of im-
mune cells

CytoTRACE and Monocle3
scores for four cell clusters, including dendritic cells,

identified pseudotime

macrophages, T cells, and B cells, infiltrated in the tu-
mor tissues. Dendritic cells and macrophages were
identified as a low differentiated state (Fig. 5A, 5B).
Immune cells in the high PPP1R14A gene expression
group had lower differentiation (Fig. 5C, 5D).

CellChat analysis showed that the intensity of
ligand-receptor interaction between the HLA family
and CD4 in the high PPP1R4A group was higher than
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that of other ligand-receptor pairs in the low
PPP1R14A expression groups (Fig. 5E). Furthermore,
the signaling pathways regulating HLA-CD4 interac-
tions, MHC- I , and MHC- Il were activated in the high
PPP1R14A expression group (Fig. 5F).

Potentially sensitive drug

As shown in Fig. 6, among 565 drugs screened in the
bulk sequencing data, the IC50 value of AXITINIB
showed the greatest negative correlation with the ex-
pression of PPP1R14A (Fig. 6A). Screening of the
single-cell sequencing data also confirmed that the
IC50 value of AXITINIB in the PPP1R14A high-
expression group was smaller than that in the low-
expression group (Fig. 6B, 6C). Furthermore, at the
cellular level, T cells had the lowest sensitivity to
AXITINIB, but pDC had the highest sensitivity
(Fig. 6D).

Validation of PPP1R14A expression in TCGA data-
set cohorts

Patients in the TCGA cohort were divided into niv-
olumab sensitive (n = 209) and resistant groups (n
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¥k

Comparisons of CytoTRACE score (C) and pseudotime score (D) between the high and low PPP1R14A gene expression groups ( P <
0.001). (E) Potential ligand-receptor communication associated with PPP1R14A. (F) GSEA analysis of the MHC- | and MHC- |l pathways as-

sociated with PPP1R14A expression.
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Figure 6. Screening potentially sensitive drug for nivolumab resistant HNSCC patients. (A) The correlation between PPP1R14A
gene expression and the half maximal inhibitory concentration (IC50) of 565 FDA approved immunotherapeutics. (B, C) Comparisons of
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IC50 of AXITINIB in bulk (B) and single-cell (C) sequencing data between the high and low PPP1R14A expression groups (- P < 0.001).

(D) Scatter plots of IC50 of AXITINIB for immune cells.

313) (Fig. 7A). PPP1R14A gene expression was posi-
tively correlated with tumor immune dysfunction and
exclusion (TIDE) scores (r > 0, P < 0.05, Fig. 7B),
and PPP1R14A gene was significantly highly expressed
in the nivolumab resistant group compared with the
sensitive group (P < 0.05, Fig. 7C). Similarly, there
was a significant difference in HNSCC patients' immu-
notherapy response between the two PPP1R14A gene
expression groups, with lower benefit in the high ex-
pression group (P < 0.05, Fig. 7D). This further dem-
onstrates that PPP1R14A gene is expected to be a tar-
get predicting
HNSCC patients. Moreover, we validated this findings
in the GSE212551 and GSE226134 cohorts of HNSCC
patients, and the results supported our findings as
well (Fig. 7C, 7D).

for immunotherapy resistance in

DISCUSSION

The rich blood supply and dense lymphatic tissues in
the head and neck lead to HNSCC susceptible to inva-
sion and metastasis, and the therapeutic effect is un-
satisfactory!®®. Currently, cisplatin is the adjuvant
therapeutic choice for patients with advanced localized
HNSCC. However, due to the prolonged platinum expo-
sure, patients are prone to drug resistance!®®. Immu-
notherapy, an emerging oncology therapy with unprec-
edented efficacy against a wide range of tumors, has
been approved for the treatment of HNSCC recurrence
or metastasis after platinum-based
therapy!?-2°l, Although immunotherapy has dramati-

during or
cally improved the prognosis of patients with ad-
vanced HNSCC, only 20%-30% of treated patients ben-
efit in the long term, which may be attributed to drug
resistance due to dysfunction or down-regulation of

antigen presentation, depletion of expressed tumor
neoantigens, and tumor-mediated rejec-
tion%3!, Hence, exploring how resistance to immuno-

immune

therapy in HNSCC arises and develops and what its
molecular targets are is necessary to improve progno-
sis of HNSCC patients. In this study, we revealed a
significant relationship between PPP1R14A gene and
resistance to nivolumab in HNSCC patients through
analyzing bulk and single-cell sequencing data.

We identifed that after nivolumab treatment the
expression of PPP1R14A gene was increased in the
immunotherapy-resistant patients and decreased in
the sensitive patients. This suggests that PPP1R14A
may associated with drug resistance in HNSCC pa-
tients. PPP1R14A may be a promoter of the infiltration
of pro-tumor immune microenvironment cells, such as
M2 macrophages, resting mast cells, and memory B
cells. The infiltration of these immune cells has been
shown to be involved in the progression of
HNSCCPB?#34, Moreover, PPP1R14A gene may also be
activated by immunosuppressive factors such as
PDCD1, CTLA4 and PDCD1LG2, which are participated
in HNSCC progression .

The human PPP1IR14A gene is
19g13.1 and encodes a protein containing 147 amino
acids®). The Human Protein Atlas (HPA) database
shows that PPP1R14A protein is mainly localized in the

localized at

nucleoplasm and to a less extent in nucleosomest®®, It
belongs to the protein phosphatase 1 inhibitor family
and acts as an important regulator of protein phospho-
ratory. It regulates a variety of cellular processes,
such as actin contraction, glycogen metabolism, cell
cycle, protein synthesis, and neuronal signal transduc-
tionl). Previous studies have found that PPP1R14A is
associated with the development of various diseases,
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Figure 7. Validation of PPP1R14A expression in external cohorts. (A) The tumor immune dysfunction and exclusion (TIDE) score dis-
tribution of the TCGA cohort samples. (B) Correlation between the PPP1R14A expression and TIDE scores in the nivolumab-sensitive and
-resistant groups. (C) Differential PPP1R14A expression in nivolumab-sensitive and -resistant groups in the TCGA (n = 552), GSE21551
(n = 100), and GSE226134 (n = 49) cohorts. ("P < 0.05, P < 0.001). (D) Relationship between PPP1R14A expression and immuno-

therapy response in the TCGA, GSE21551, and GSE226134 cohorts.

including prostate cancer, cervical cancer, and Al-
zheimer's diseasel-401,

It has been proved that cellular metabolic pro-
cesses are involved in tumor immunotherapy resis-
tance!*t. To clarify whether metabolism-related path-
ways is participated in immunotherapeutic resistance
in HNSCC patients, we analyzed single-cell and bulk
RNA-sequencing data using bioinformatic analysis,

and verified that a significant relationship between
high PPP1R14A expression and activation of tricarbox-
ylic acid cycle and glycolysis. The study by Liu et a/.[*?
also confirmed that inhibiting tricarboxylic acid cycle
can enhance the efficacy of anti-PD1 therapy in mela-
noma Furthermore, we found higher
PPP1R14A expression mediated immunotherapy resis-

tance in HNSCC patients by inhibiting amino acid me-

patients.
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tabolism. In tumor immune microenvironment, amino
acid metabolism has been proved to regulate the pro-
liferation and anti-tumor activity of T cells, NK cells,
and B cells!*3!, Therefore, PPP1R14A may promote niv-
olumab resistance by regulating metabolism pathways
in tumor tissues, such as the tricarboxylic acid cycle,
glycolysis, and amino acid metabolism.

In addition, high PPP1R14A gene expression was
closely associated with cell stemness and increased
with the progression of cell differentiation. The role of
high cell stemness in HNSCC heterogeneity, metasta-
sis, and cisplatin resistance has been demonstrated
and may have a potential impact on immunotherapy
resistance*!. Our research identified AXITINIB as one
of the potential therapeutic agents for patients resis-
tant to nivolumab. AXITINIB is a multi-tyrosine kinase
inhibitor whose targets include VEGFR-1, -2, and -3.
In addition, it has inhibitory activity against the down-
stream effectors of PDGFR and EGFR, both of which
usually contribute to head and neck tumorigenesis!**,
In cisplatin-resistant patients with advanced recurrent
or metastatic HNSCC, the 6-month overall survival
rate was found to be 70% in patients treated with
AXITINIB, which was higher than that of the control
group (50%), and the combination of AXITINIB with
an anti-PD-1 drug further improved the overall sur-
vival rate of HNSCC patients[*®!,

In conclusion, we screened out the genes associ-
ated with resistance to nivolumab in HNSCC patients
by single-cell and bulk RNA-sequencing data and ex-
plored how these genes contribute to immunothera-
peutic resistance. However, our study had limitations.
First, although we performed bioinformatic analysis of
two types of sequencing data, a much larger sample
is still needed to confirm this findings. Second, the
single-cell dataset we analyzed only contained im-
mune cells but did not contain tumor cells. Finally, the
study lacked experimental validation of the bioinfor-
matic results.
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